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Aunnoranna—IIpusesen kpurudeckuit o630p pabor Ko MaCCO-1t TENIONEpeaye B eAUBHYHYIO
chepudeckyl Kangwo, onyluuxosanuux nocae 1965 roma. Tiponeseso ofobmienme FAaHHHX,
HOJYYeHHBX aBTOPAMH cTaThil. TeupeTHuecKH PACCMOTPEHH NpeReNLHBIE CHYYau Maccome-
peRaun npM JUMUTHPYIOMMX CONPOTHBIEHWHX CIVIOLIHOM M JUCHeprupoBanHolt $as nas
0 < Re < 80, a Takmke ofmuit crydait consMmepuMeix GasoBex COMpoTuBIeHud. PesyanTaThl
TEOPETHYECKUX PACYeTOB COMOCTABIEHBl € HMEKIUMMUCH HKCIEPUMEHTANBHBIMUM JAHHBIMU,

NOMENCLATURE
radius of drop;
concentration;
volume average concentration in drop;
initial concentration in drop;
concentration in flow core;

e . ¢
distribution coefficient = ——
(cz)eq
diffusion coefficient ;
viscosity ratio of disperse to continuous

phase = i‘53;

151
kinematic viscosity of medium;
stream function;
steady-state velocity of drop;
velocity of liquid at drop equator;
individual mass transfer coefficient;
overall mass transfer coefficient;
Reynolds number;
Péclét number;
Fourier number;
individual Sherwood number;
overall Sherwood number;
degree of saturation;
volumetric velocity of continuous
phase;

Pe
Pe = e,
41+ X)
Subscripts
1, disperse phase;
2, continuous phase;
eq, equilibrium concentration.

INTRODUCTION

THE WORKS on mass transfer to a moving drop
published before 1965 were reviewed in [1}
Heat transfer for interaction between a drop
and a flow was studied in [2-4]. Recently a
number of works on experimental and theo~
retical study of mass transfer have been pub-
lished [5-12].

Without affecting the generality of the subject
all the subsequent discussion is presented in
terms of mass transfer since the most compre-
hensive experimental information is accumu-
lated in the field of liquid extraction. The shape
of drops is assumed close to spherical.

Viscous flow around drops has been studied
by Hadamard [13] and Rybczynski [14] for
Re < 1 and by Hamielec and Johnson [15] for
1 < Re < 80.
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In the present paper the limiting cases of mass
transfer for controlling resistances in the con-
tinuous and disperse phases and the general
case of comparable phase resistances for 0 < Re
< 80 have been considered (though experiments
were carried out even for larger Re numbers).

HYDRODYNAMICS OF FLOW AROUND DROPS

If the origin of the coordinate system is
placed in the centre of the drop and the polar
axis is directed to meet the flow then, according
to Hadamard and Rybczynski, for small values
of Re (Re < 1) the expressions for the stream
functions inside and outside the drop in spherical
coordinates are of the form

¥, = —$vop™(1 — p?)sin® 0 (1)

1 [X( - p?
T2=§Uo|: p__

—@+3X)p( — p)]sinz 0. ()

According to Hamielec and Johnson [15] at
1 < Re < 80 the approximate expressions for
the stream functions are of the form

qll = (Elpz + E3p4) Sin2 0
+ (F,p* + F3p*)sin?fcosf  (3)

4
Y, =<0-5p2+ E ﬂ)sinzf)
Pk
k=1
a4
E B sin? 8 cos 0. 4
k=1 pk

The values of the coefficients E, Ej, F,, F3, A4,
A,, As, As, By, By, By, B, were determined by
the authors as functions of Re and X.

The liquid velocity components are related to
the stream function by the known expressions

1 oy,
Pot = p>sin 6 86 ©)
1 o,
Yo = = psinf dp (©)
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THE LIMITING CASE OF THE CONTROLLING
RESISTANCE IN THE CONTINUOUS PHASE

The distribution of concentrations inside and
outside the drop is governed by the convective
diffusion equations

oc; dc; 4 Ve 0Ci oc; Di[azci n 2 dc;

ata T rw Dl T

1 o (. O .
Fnd50 (S‘“ 9@)] (=12 O

Since the diffusion coefficient for liquids is
rather small (D = 10~ ° cm?/s) then, for the time
of liquid flow around the drop, the diffusion
front will move by a distance much less than the
drop radius. Therefore it may be considered that
a thin diffusional boundary layer exists on the
outside drop surface and the mass transfer
process is a steady-state one.

In the approximation of the diffusional
boundary layer the last two terms in expression
(7) for the Laplace operator is spherical co-
ordinates [16] may be neglected and the
equation of convective diffusion for a steady-
state case assumes the form
vo; OC, d*c,

oc,
0,2—5;+TE=D2—6"—2. (8)

For the case of all resistance in the continuous
phase equation (8) is solved with the boundary
conditions

cy(r, 0)|= cy9

r—w

cy(r, 0)

_a
r=RlII (9)

where ¢, is the constant volumetric concentra-
tion inside the drop.

Under the assumption that the thickness of
the diffusional layer is much smaller than the
drop radius, equation (8) in Prandtl and Mizes
variables is transformed to

dc ¢
552 = D,R™(vy), =, sin? anﬂ.

The expressions for the stream functions, linear-
ized with respect to p! = p — 1, are of one and

(10)
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the same form

Y= —v,psinf (11)
where v, is absolute value of the liquid velocity
at the drop equator.

For Re < 1, v,q = vo. For 1 < Re < 80 the
surface velocity of liquid at the equator is

approximately determined by Baird and
Hamielec [17] as
10 + 24,
= 12
P = gL 3X 12

The boundary conditions {9) in terms of the
variables 8, ¥ are transformed into

(0, ¥) | = c30 (6, P)
L T

=&
Ly a3)
Y0

For small Rewnolds numbers equations {10} and
(11) with boundary conditions (13) were solved
by Levich [16]. Levich’s solution is

2

Shy, =~ f(Pe,). 14
Equation (14) may be represented by
Rv,,
Shy = 4\/(3“{52_) (15)

Since the expression for the stream function (11)
is of the same form both for small and large Re,
then equation (15} is also valid for the range of
Reynolds numbers 1 < Re < 80. In the latter
case the velocity of flow at the drop equator is
determined by equation (12). By substituting the
value of v, from (12) into equation (15)

20 + 44,
$“=P”VKM+9X)JWQ (16)

Equation (16) was obtained earlier by Baird and
Hamielec [17] in the solution of the external
problem within the framework of the theory of
diffusional boundary layers by a somewhat
cumbersome method.
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THE LIMITING CASE OF THE CONTROLLING
RESISTANCE IN THE DISPERSE PHASE

In the case of the total resistance being
located in the disperse phase the distribution of
the concentrations of the extracted component
is determined by the solution of the equations
of convective diffusion (7) with the boundary
conditions

exlr6,0] = Wezo e 8,0)] #

1
and initial condition
e, 0.0)] = cio (18)

t

For the first time the equation of convective
diffusion for Re < 1 was solved by Kronig and
Brink (18) on the assumption that the concentra-
tion of the extracted compouent along a stream-
line is constant. The authors substantiated the
adopted assumptions by an estimation accord-
ing to which the time of circulation along the
streamline is much shorter than the time of
relaxation of drop saturation by molecular
diffusion. With the above assumptions the
authors obtained the convection diffusion equa-
tion in the form

2

(19)

where the curvilinear coordinate x = 4p*(1 —
p?) sin? @ coincides with the expressions for the
stream function except for the constant factor.
The coefficients P(x) and g(x) are functions of
total elliptic integrals.

Boundary conditions (17) in terms of variables
x, t assume the form

cylx, ﬂi:—;;f’cm cy{x, f)ixi XOO (20

The solution of Kronig and Brink for the degree
of saturation is of the form

o0

A)=1-3 ; B,exp(~162,7). (21)
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Kronig and Brink calculated seven values of the
coefficients B, and 4, by the Ritz method.

Later on equation (19) with boundary (20)
and initial conditions (18) was computed on the
electronic digital computer M-20 for a wide
range of Fourier numbers from 1 = 10™%. The
results of computations for A are presented in
Table 1 of the Appendix to [1]. Table 4-2 in [1]
represents the values of 4 calculated by equation
(21) for n = 7. The comparison of calculations
for ©> 1073 shows satisfactory agreement.
However at t = ' ~* the values of 4 calculated
more accurately on the electronic digital com-
puter were 2-6 times smaller than those given by
equation (21).

In [7, 8] the solution of [18] is criticized in
connection with the fact that at large Pe
numbers the basic assumptions of Kronig and
Brink do not hold in a thin surface layer of a
drop. At the same time, according to the
authors’ of [7, 8] the main resistance to mass
transfer in the drop is concentrated in a thin
diffusional boundary layer of the drop.

In this connection, to give more compre-
hensive explanation of the Kronig and Brink
model, application in [19] of the solution of the
convective diffusion equation (7) is carried out
under conditions (17) and (18) for the case when
the Pe number is large enough. The solution is
performed by the Bubnov—Galerkin method
[20]. In the drop the concentration distribution
is found in the form of the series

()

dz,r,0) = Y afr) efr, 6).

i=1

(22)

The succession of approximating functions
was chosen to satisfy the boundary conditions
(17) and the steady-state convective diffusion
equation in the first approximation. According
to the Bubnov-Galerkin method the boundary-
value problem is reduced to the system of
ordinary differential equations in terms of the
coefficients a{1)
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FiG. 1. Degree of saturation A against Fourier number.
Solid curve, Kronig and Brink’s solution [18]; dotted line,
Brounshtein and Fishbein’s solution [19].
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F1G. 2. Shy, number as function of Pe’ number at = > 05.
1, Johns and Beckman’s solution [11]; 2, Levich, et al. [7]
and Ruckenstein’s [12] solutions for large Pe;.
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n

%—&- Z Axar(t) =00 = 1,2,...,n)
dz
k=1
(23)
with initial conditions
af0) = B (24)

For the degree of saturation the following ex-
pression is found

A(t) =1 — i Z af7) B;
47

=1

(23)
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The series (25) converges somewhat quicker than
the series (21). The numerical calculations have
been carried out for n = 5. Figure 1 represents
the calculations by equations (21) and (25).

The solution of equation (7) with conditions
(17) and (18) for various Péclét numbers was
obtained by Johnson and Beckman [11] on an
electronic digital computer. The computational
results for large 1{tr > 0-13) are presented in
Fig. 2 (Curve 1). As follows from the graph the
Sherwood number is practically independent of
P¢' at Pe' > 100, The asymptotic value of Sh
obtained by Johns and Beckman (ie. the value
of Sh at large Pe and 7} is 17°9. The same value of
Sh is asymptotic for the Kronig and Brink
solution. Thus Kronig and Brink’s solution may
be used for the calculation of heat and mass
transfer into a spherical drop for the total resis-
tance present in the disperse phase if T > 01

Pe' > 100. At 7 < 01 the solution by Kronig

FiG. 3. Sh; number as a function of Fourier number for

various Pe,. Solid curves, Johns and Beckman’s solution;

dotted line, solution of Kronig and Brink’s equations on
electronic digital computer.

may already be applied at P¢' » 100. In Fig. 3
the results of calculations by Johns and Beckman
show the dependence of the Sherwood number
on the Fourier number at various Péclét numbers
The dashed curve corresponds to the accurate
solution of equation {19} on an electronic
digital computer at the Computation Centre
of Leningrad University.

For t < 0015 the different curves corre-
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sponding to the values of Péclét numbers from
Pé¢’ = 0 (pure molecular diffusion) to Pe’ = 80
converge into a single curve described, according
to Johns and Beckmann, by the equation

- 2 &
Shy = — ?rlnz;;

where
SLo1—338 (26)
C10

The dotted line which corresponds to the
computer solution by Kronig and Brink satisfies
equation (26) for 1 < 1074,

120

L p202 , Re=
% 2.[&‘0 ,RC=80
ool 3u=2 ,Re=80
2
30"—"
. B0 p
15
40—
20 foe
j i |
¢ 2 3 4
log (X105}

F1G. 4. Shy number asa functionof rat X = 0,2.1: X = 0,2;
Re<1;2: X =0;Re=80;3:X = 2; Re = 80.

For Reynolds numbers much greater than
unity {1 < Re < 80) equation (7) with con-
ditions (17) and (18) was solved with the use of
the expression for the stream function (3) in
[21]. The solution for large Pe was carried out
by the Bubnov—Galerkin method. The calcula-
tion results are plotted in Fig. 4 for X = 0 and
2 and in Fig. 5, for X = 10. As follows from
thegraphsfor X < 2andt > 10~ 3 the Sherwood
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3
p =10
I Re= |
120——2 2 Re=40
Re =80
100 p—
80—
&
60 |—
40—
20—
N | |

2 3 4
log (TXI10%)

FiG. 5. Shy number as a function of tat X = 10. 1: Re < 1;
2:Re =40;3: Re = 80.

number slightly depends on Re. However at
X =10 the value of Sh; for Re =80 and
7 = 1073 is rather greater than for Re < 1.

COMPARABLE PHASE RESISTANCES

The concentration change in the continuous
phase in counter-flow for the case of comparable
phase resistances is considered in [6], where
equation (19) is solved approximately for bound-
ary conditions corresponding to the averaged
material balance in counter-flow of the ex-
tracted component. The numerical values of 4
as a function of the Fourier number and para-
meters o = Viy/V,; B = Dy/2K,R are in-
cluded in [1]* The time average overall
Sherwood number for the disperse phase at
o = 0 is related with the degree of extraction A
by the expression

37

* In [1], Appendix 1, pp. 299-306; text, p. 115 § =
D,i/k,R should be substituted by 8 = D,y/2k,R.
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The results of calculations for « = 0 are plotted
in Figs. 6-8. As follows from the graphs in Figs. 6
and 7 the resistance of the disperse phase may be
considered controlling at § < 1073 (the limiting
case of the controlling resistance in the disperse
phase is ¥ — 0 and § — 0, respectively). The
value f— oo (¥ — o) corresponds to the
limiting case of the controlling resistance in the
continuous phase. As follows from the data of
Fig. 8 the continuous phase resistance is
controlling up to t= 1 at f > 1. Thus the
range of B values 1072 < B < 1 corresponds
to the intermediate case of comparable phase
resistances.

As is known for the steady-state conditions
of mass transfer the additivity equations [1]
may be applied

1
K,

1
K,

1

1
k_2 + lp_k; (28)

1w
ki ok,
Since for comparable phase resistances the mass
transfer regime is non-steady only at t < 0-1
(Fig. 7), then at 7 > 0-1 the additivity equation
(28) may be used for the calculation of the overall
mass transfer coefficient. At © < 01 the correc-
tion for the additivity formula may be calculated
by the equation

(29)

Ll
5 7 103
log (rX10°)

5 7 102 2 3 2 3 s 7 10°

FI1G. 6. Degree of saturation A against T at @ = 0 and
8=0,10"310"210"1 1.
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20-B=107" B3

o —t—— T - L]I
57102 23 57103 23 5 710 2 3 5 7 108

log (rX10%)

F1G. 7. Sh, as a function of A at t =0 and =0, 1073,
10721074 1.

where (K,),,; is the time-average mass transfer
coeflicient predicted by the additivity equation
(28).

THE SOLUTION OF THE INTERNAL PROBLEM

BY USING THE APPROXIMATION OF A THIN
DIFFUSION BOUNDARY LAYER

In recently published works [7, 8, 12] the
case of comparable phase resistances for Re < 1
is considered on the assumption of the existence
of a thin diffusional boundary layer both on the
external and internal sides of the drop surface
at large Pe numbers,

Levich [16] arrives at the existence of a thin
diffusional boundary layer at large Pe after
considering the equation of convective diffusion,
the dimensionless form of which is

(30)

N 1
(V) C = 5. 4C.

Shoy /5hs

ot =107
m:: B L

57107 2 3 57140 2 3 5710 2 3 5 7 0%
log {rX10%)
FIG. 8. Sh, as a function of tat « = 0 and f = 1073, 1072,
10-4, 1.
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At large Pe the left hand side of the equation
in the flow core is zero. Hence Levich concludes
that always VC = 0, ie. C = const. However
(VV) C = 0 not only at VC = 0 but also in the
case when the concentration gradient is normal
to the streamlines, This is the case found by
Kronig and Brink for mass transfer to the drop
with the resistance present only in the disperse
phase.

Since Johns and Beckmann [11] obtained
an exact solution of the convective diffusion
equation (7) for the case of the controlling
resistance in the disperse phase, this solution
may be compared to those by Levich et al. [7]
and Ruckenstein [12]. As the expressions for
the stream function inside and outside the
drop in the approximation of a thin diffusional
boundary layer are of the same form (11) as the
convective diffusion equation (10) and boundary
conditions (13), then equation (14) in the form

- 2
' /B + X))

is the solution. Equation (31) may be obtained
from general equations for comparable phase
resistances cited in [7] and [12] as the limiting
case. The comparison of calculations by equation
(31) with the exact solution by Johns and Beck-
man for 1> 015 (when the mass transfer
process is steady) is presented in Fig. 2 (curve 2).
For 1 < 0-15 the process of mass transfer is
nonsteady according to the exact calculation,
while Sh; determined by equation (31) does
not depend on 1. According to [8] the process
in unsteady only at the very initial moment of
formation of the diffusional boundary layer.
The relaxation time for the boundary layer is
small and equal to the ratio of drop diameter to
its rising velocity. The Fourier number t = 4/Pe
corresponds to the above condition. The authors
of [7, 8] consider that the solution obtained is
valid for the Fourier numbers 1, € 1t < 1,
where 1, is the Fourier number corresponding
to the time in which the total amount of the
substance dissolved in a drop decreases ¢ times
the case of molecular diffusion. In reality

S

JPey) (D)
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equation (31) holds on the assumption of the
existence of a diffusional boundary layer for a
quasi-stationary mass transfer mechanism, ie.
in the case when for the time of relaxation of
the boundary layer the relative driving force
(C,e — CHAC,q — Cyy) changesslightly. Assume
this condition. The concentration change inside
the drop is found from the solution of the
differential equation

de, 3
dt R

at the initial condition ¢, = ¢,, at t = 0. The
solution is of the form

kl(ceq - Cl)

Ceq - Cl _ 3k1t

Coq — Cot R

Consequently, the time for the relative driving
force to decrease e times t, = R/3k, or
T, = 2/3Sh,.

By substituting into expression for 7, the value
of Shy, from (31) gives

Bl + X))
"= T3 (Pey)

The process is nonsteady at t, » 7, Since
1, > 4/Pe then the quasi-stationary condition
may be written in the form

12
ViPe) > T

which always holds at large Pe.

Thus, on the assumption of a diffusional
boundary layer inside the drop (if such a layer
existed) equation (31) would hold at large Pe
for any t > 4/Pe, rather than for a finite range
of numbers 7, < 7 < 7, as considered by the
authors of [7, 8].

COMPARISON WITH EXPERIMENTAL DATA

As was pointed out in the Introduction, a
review of the works on mass transfer to moving
drops published before 1965 (including experi-
mental ones) is given in monograph [1].
Recently a number of new works have been

B. I. BROUNSHTEIN, A. S. ZHELEZNYAK and G. A. FISHBEIN

published which include the comparison of the
predicted data with experimental ones.

Zheleznyak and Brounshtein [5, 22, 23]
after extraction from single drops in five systems
with the ratio of the viscosities of disperse
and solid phases 0 < X <2 and Reynolds
numbers 15 < Re < 650, established that for
drops d = 1-3 mm at Re < 200 the deviation
between the experimental data and those pre-
dicted by Kronig and Brink do not exceed
10-12 per cent. At Re > 200 the deviation is
much greater. Thus for example, at 200 < Re <
500 the relative deviation (predicted to experi-
mental mass transfer coefficient ratio) ranges
from 0-85 to 0-45. Similar results were obtained
when treating the experimental data on extrac-
tion of propionic acid from aqueous solution
with benzene by Smirnov and Kuznetzov
[24, 25]. The results of the comparison of
experimental data of [22, 23] with the predicted
ones by Kronig and Brink are presented in
Fig. 9. Comprehensive experimental material
was obtained for the extraction of acetic acid
from aqueous solutions with different concentra-
tions of ethyl acetate [26]. These experiments
are in good agreement with Kronig and Brink’s
calculations.

Skelland and Wellek [9] carried out experi-
ments with four binary systems with resistance
in the disperse phase only and Reynolds num-
bers 37 < Re < 546. The ratio between vis-
cosities of disperse and continuous phases for
three systems was X ~ 2 and for one X ~ 12.
All the experimental data have been correlated
for all the systems within the above range of Re
numbers. The experimental data have been
compared with the data predicted by Kronig and
Brink. In this work the scatter of the experimental
data is very large (the roof mean square deviation
is 46 per cent). As was shown earlier (Fig. 4)
the equations by Kronig and Brink may be
used for calculating the rate of mass transfer
in the range 1 < Re < 80 if X < 2. Zheleznyak
and Brounshtein have found that at X <2
the experimental data are in satisfactory agree-
ment with those predicted by Kronig and Brink
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FIG. 9. Comparison of experimental data for Sh, with those predicted by equations of Kronig and

Brink [18], I and Newman [1] II.
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A Woter (dispersed phase) —propionic acid —benzene {spray column)
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I Higbie theoretical curve
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FiG. 10. Comparison of experimental relationship Sh, against ./Pe, with

calculations by the Higbie equation.
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up to Re =~ 200. The large discrepancy between
experimental data and those predicted by
Kronig and Brink is perhaps caused by the fact
that in Skelland and Wellek’s paper the experi-
mental data are correlated for rather wide
ranges of Re numbers and viscosity ratios.

U Chzhi-Tztuan et al. [10], while studying
mass transfer to single drops in n-butanol and
isobutanol, have found that the transfer process
is in a good agreement with the data of Kronig
and Brink at Re = 50-60. A number of other
works on heat transfer are known which show
satisfactory agreement between experimental
data and those predicted by Kronig and Brink
[2-4]. Thus, according to Calderbank and
Korchinski [2] Kronig and Brink’s formula is
valid for Re < 200.

Kronig and Brink’s model has been used in
developing the engineering methods for the
calculation of spray and plate columns and
yielded positive results [27].

For the case of controlling resistance in the
continuous phase six systems have been checked
[22, 23]. The experimental data showed fine
agreement with the values calculated by the
Higbie equation, Sh, = 1-13 ,/(Pe,). The com-
parison of the experimental data with the
theoretical curve is presented in Fig. 10. The
averaged experimental curve I, Fig. 10 satisfies
the equation

Shy = 102 /(Pe,) (32)

i.e. the deviation of the values predicted by the
Higbie equation from the experimental data is
on the average 10 per cent.

For the disperse to solid phase ratio X < 1
and Re ~ 80 equation (16) yields results close
to the Higbie equation and provides satisfactory
agreement with the data of the experiment.

For the case of comparable phase resistances
the experimental test of the numerical results
was carried out within the range of the para-
meters o = 0:0-0:03;10™* < B < 122 and Fourier
numbers 7 < 0:016. Within the above range
the experimental data show satisfactory agree-
ment with the data of calculations [6].
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In conclusion the authors express their
acknowledgement to V. Ya. Rivkind and B. A.
Samokish under whose direction the computa-
tions have been carried out on the electronic
digital computer M-20 at the Leningrad State
University.

CONCLUSION

Equations are presented for computation of
the rate of mass transfer to a spherical drop for
the limiting cases of the resistances present only
in the continuous and disperse phases as well
as for the general case of comparable phase
resistances within the range of Reynolds num-
bers 0 < Re < 80.

The calculation of the mass transfer rate for
the controlling resistance in the disperse phase
using the approximation of a thin diffusional
boundary layer is shown to be incorrect.

It is also shown that within the range
0 < Re £ 200 and the ratio between the vis-
cosities of disperse and continuous phases
X < 2 the experimental data on the rate of mass
and heat transfer for the controlling resistance in
the disperse phase and for the case of comparable
phase resistances are in satisfactory agreement
with the calculated values.
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TRANSPORT DE CHALEUR ET DE MASSE POUR L'INTERACTION DE PARTICULES
SPHERIQUES ET DE BULLES DE GAZ AVEC UN ECOULEMENT LIQUIDE

Résumé 1 article présente un compte-rendu des travaux publiés depuis 1965 sur le transport de chaleur

¢t de mass & une goutte sphérigue unique. Les données de I'article actuel sont corrélées. Les cas restreints

du transport de mass pour les résistances maximales des phases continue et dispersée 4 6 < Re < 80etle

cas général des résistances de phase commensurables sont étudiés théoriquement. Les résultats des calcuis
théoriques sont comparés avec les résultats expérimentaux disponibles.

WARME- UND STOFFUBERGANG BEI DER WECHSELWIRKUNG VON SPHARISCHEN
TROPFEN UND GASBLASEN MIT BINEN FLUSSIGKEITSSTROMUNG

Zusammenfassung— Der Bericht bietet einen Uberblick iiber die nach 1965 verdffentlichten Arbeiten in

der Warme- und Stoffiibertragung an einzelne sphirische Tropfen. Die Messergebnisse in diesem Artikel

wurden in Korrelation gebracht. Die begrenzten Fille des Stofftransportes fiir die maximalen Widerstinde

in feinverteiltem und in dispersem Zustand bei 0 < Re « 80 und der allgemeine Fall entsprechender

Phasenwiderstiinde wurden theoretisch untersucht. Die Ergebnise der theoretischen Kalkulationen wurden
mit den verfiigbaren experimentelien Daten verglichen.

Abstract—The paper presents a review of works on heat and mass transfer to a single spherical drop

published after 1965. The data of the present are correlated, The limiting cases of mass transfer for the

resistances present in the continuous and disperse phases only at 0 < Re € < 80 and the general case of

comparable phase resistances were studied theoretically. The results of theoretical calculations are com-
pared with the experimental data available.



